

Design and analysis of bolted joints

Dr Hengan Ou Coates B80a h.ou@nottingham.ac.uk

Learning Objectives

• To be familiar with the types of joints including joining technologies, loading conditions, and design considerations of bolted joints **Part 1:**

Part 2:

- To be able to determine the stiffness of the bolt & clamped members, resultant loads of pre-tensioned joint
- To be able to design against joint failure & to calculate reserve factor of a pre-tensioned joint
- To understand the behaviour of pre-tensioned joint under cyclic loading
- **Worked examples** *Part 3:*

Function & types of Joints/Fasteners

• A joint or fastener is a device used to connect or join two or more components.

A layman might consider **threaded fasteners** uninteresting machine elements, but it is **unimaginable** that most machines & structures can be built without.

- **Non-permanent joints**
	- Screws, threaded and unthreaded fasteners and setscrews, etc.
- **Permanent joints**
	- Rivets, welded and adhesive joints, friction joints, etc.
	- Fasteners used as permanent joints that are never disassembled.

A bolt, a screw or a stud? *Bolted joint Part 1*

- A **screw** has either pre-formed or self-made internal threads.
- A **stud** is an externally threaded headless fastener. One end mates with a tapped component and the other with a standard nut.

Bolts, screws and studs are all commonly used in different applications, the general design consideration and method are similar.

Bolted joint Part 1

Examples of bolted joints

Bolted joints (studs)

variable pitch propeller

Labyrinth seals in aeroengine applications **Seals Part 2**

• **Rolls-Royce Trent 1000 three shaft jet engine**

Shear joints

Refer Shigley's Mechanical Engineering Design, Ch8 for detail

Patterned joints

Rivets

Rivets are non-threaded fasteners

- **Solid rivets** assembled from one side and 'upset' on the other
	- **BS 4620: 1970** for general purposes
	- For airframe applications BS A 361, 351(Ni), 362(Ti).
- **Tubular rivets** have a hole down the $axis -$ upsetting is easier
- **Blind rivets** are tubular and upset from the installation side

Bolted joint Part 1

Examples of Riveted structures

7,500,000 rivets used

More example of Rivets

- Rivets remain an important method of assembly of aircraft structures
- More or less permanent, they don't work loose
- But can be drilled out if repairs are needed
- **Boeing 747** uses over 2.5x 10^6 fasteners

Rivets

- Advantages:
	- Low cost
	- Rapid assembly (thousands/hour when automated)
	- Permanent (but can be drilled out)
	- Can join dissimilar materials (watch out for galvanic corrosion)
	- Wide range of shapes and materials
- Disadvantages:
	- Slow compared with welding and adhesives
	- **Shear loading (poor in tensile loading)**
	- Joints leak unless sealed

Welded joints

Welding is a fabrication process that joins materials by using high heat to melt the parts and filler material together.

Gas flame, **electric arc**, **laser**, **electron beam**, **friction** and **ultrasound** can all be used as **energy sources for heating**.

Examples of welded joints

Bolted joint Part 1

Airbus 380, lower fuselage panels (**laser welding**)

The angel of the North The angel of the North Channel Contract Contract Contract Offshore oil right

Hitachi High speed train (**Friction Stir Welding**)

Bolted joint Part 1

Solid State Welding Processes

Inertia friction welding for areoengine shaft

Friction stir welding (FSW), Invention by TWI [https://www.youtube.com/watch](https://www.youtube.com/watch?v=y7rCTdxvGlg) ?v=y7rCTdxvGlg

O. Al-Jumaili, et al. FSW of Al6082, JMPT, vol.275,2020

Inertia friction welding machine, MTC

Linear friction welding for manufacturing of blisk, MTU

Adhesive joints

BAe RJ fuselage panel with stringers bonded to skin

Adhesive joint of engine component

Types of adhesive lap joints

Quiz 1: **True or False** to each of the following statements **bolted joints**

- **A. Bolted joint** may be used as both **"permanent"** and "**non-permanent**" joints.
- **B. Bolted joint** can be used to **take both tensile and shear load**.
- **C. Rivets** are good in taking **tensile but not shear load**.
- D. Welding is commonly used to provide "**permanent**" joint.

Quiz 1: **True or False** to each of the following statements **bolted joints**

- **A. Bolted joint** may be used as both **"permanent"** and "**non-permanent**" joints. **(true)**
- **B. Bolted joint** can be used to **take both tensile and shear load**. **(true)**
- **C. Rivets** are good in taking **tensile but not shear load**. **(false)**
- D. Welding is commonly used to provide "**permanent**" joint. **(true)**

Design and analysis of bolted joints

End of Part 1

Design and analysis of bolted joints

Part 2

Design Consideration of Bolted Joints

- Permanent or non-permanent joints
- Loads, stresses & strength
- Life
- Operational conditions
- Tooling & manufacturing efficiency

Loading of a bolted joint

• Initially, when the structure is unloaded, the tensile force in the bolt is equal to the compressive force in the clamped members.

Bolted joint Part 2

Loading of a bolted joint

• When a load is applied to the joint (pressure, inertia, etc.), some of this load will stretch the bolt above its initial (pretensioned) length.

Pre-tensioned bolted joints

Bolts are pre-tensioned for two reasons

- 1. The bolt force must exceed the maximum force in the clamped members in service otherwise the joint faces will separate.
- 2. Pre-tensioning reduces the fluctuating stresses experienced by the bolt, thereby increasing the fatigue life.

Pre-tensioned bolted Joints

• Recommended pre-load for **non-permanent** joints

$$
F_i = 0.75 A_S \sigma_p
$$

• Recommended pre-load for **permanent** joints

$$
F_i = 0.9 A_S \sigma_p
$$

where, *A^s* is the **tensile area** of the bolt,

σp is the **proof strength** of the bolt.

(pitch diameter) (minor diameter) $A_{\mathcal{S}}=$ $\overline{\pi}$ $\frac{1}{16} \left(d_p + d_r \right)$ 2 $d_p = d - 0.6495p$ $d_r = d - 1.0825p$

(*d* is **nominal major diameter** and *p* is **pitch**)

If detailed information of the **proof strength**, *σ^p* is unavailable, an approximate value may be used

σy is the **yield strength** $\sigma_p = 0.85 \sigma_v$

Grades & markings of bolts

• **BS 3692:2001 ISO metric hexagon bolts**, screws and

nuts – Specification

Notes: ISO stands for International Organisation of Standards

- **M** ISO metric thread
- 1 st **8** represents **100th** of the **tensile Strength**
- 2 nd **8 or 0.8** indicates the **ratio** between the **yield strength** and the **tensile strength**

For example of an **8.8** bolt,

the **tensile strength**: the **yield strength** $\sigma_{IITS} = 8 \times 100 = 800 (MP_{q})$ $\sigma_{v} = 0.8 \times 800 = 640 (MP_{a})$

Therefore, $\sigma_p = 0.85 \sigma_v = 0.85 \times 640 = 544 (MP_a)$

Metric thread tensile area and mechanical properties

• **BS EN ISO 898-1: 2013 Mechanical properties of fasteners made of carbon and alloy steels** (page 11)

Note: EN denotes European standards

Bolted joint Part 2

Determining bolt torque to pre-tension

• **Recall torque equation for power screw**

$$
T = \frac{F_i d_p \left(\mu \pi d_p + l \cos \alpha\right)}{2 \left(\pi d_p \cos \alpha - \mu l\right)} + \mu_c F_i \frac{d_c}{2}
$$

where $d_{\rm p}$ is pitch diameter, $d_{\rm c}$ is collar diameter, *l* is lead, *Fi* is pretension, μ and $\mu_{\rm c}$ are friction coefficients.

rearrange and simplify the above equation

 $T = KF_i d$

where *K* is torque coefficient dependent upon surface finish & lubrication, *K* **≈ 0.2** for most cases; *d* is nominal diameter and *Fi* is pretension

Bolted joint Part 2

Bolted joint Part 2

Modelling of bolted joint

- F_i = preload on bolt due to tightening
- F_b = resultant load on bolt in **tension**
- F_c = resultant load on components in **compression**

$$
\begin{array}{|c|c|c|}\n\hline\n & & & \\
\hline\n & & & \\
\h
$$

$$
F_i = F_b = F_c
$$

- F_i = preload on bolt due to tightening
- *P* = external tensile load:

 $P = P_c + P_b$

- P_b = portion of *P* taken by bolt
- P_c = portion of *P* taken by components
- F_b = resultant load on bolt
- F_c = resultant load on components

 $F_b = P_b + F_i > 0$ $F_c = P_c - F_i \leq 0$

• Effectively, the bolted joint can be modelled as **two springs in**

parallel with the components in compression & the bolt in

 F_{pull} ≇Ω ÁÍ $\mathbf{\mathsf{\underline{\times}}}$

Hooke's law of a spring $\mathbf{F} = \mathbf{k} \times \Delta \mathbf{x}$

tension. Change in bolt length $\delta_b =$ P_b K_b

$$
= \frac{1}{\sum_{c \text{components}}} \delta_c = \frac{P_c}{K_c}
$$

 $\delta_b = \delta_c$

Springs in parallel & series

as
$$
\delta_b = \frac{P_b}{K_b} = \delta_c = \frac{P_c}{K_c}
$$
, then $\frac{P_b}{K_b} = \frac{P_c}{K_c}$

but total external load is:

$$
P = P_b + P_c = P_b + P_b \left(\frac{K_c}{K_b}\right) = \left(1 + \frac{K_c}{K_b}\right) P_b
$$

rearranging:

$$
P_b = \frac{K_b}{K_b + K_c} P; \qquad P_c = \frac{K_c}{K_b + K_c} P
$$

$$
P_b = \frac{K_b}{K_b + K_c} P; \qquad P_c = \frac{K_c}{K_b + K_c} P
$$

Resultant load on the bolt **in tension** is:

$$
F_b = P_b + F_i = \frac{K_b}{K_b + K_c}P + F_i > 0
$$

Similarly, for the component **in compression**:

$$
F_c = P_c - F_i = \frac{K_c}{K_b + K_c}P - F_i \le 0
$$

 $F_b = P_b + F_i > 0$ $F_c = P_c - F_i \leq 0$

Calculating *K***^b**

• $K_{\rm b}$ is easy enough to calculate as $K_{\rm b} = P/\delta$ if the bolt is threaded along its **length of grip:**

$$
K_b = \frac{A_S E}{l_t}
$$

where, *As* is tensile area, *E* is the Young's

Modulus and *lt* is the length

$$
A_S = \frac{\pi}{16} \left(d_p + d_r \right)^2
$$

2
$$
d_p = d - 0.6495p
$$

\n $d_r = d - 1.0825p$

(for metric threads)

where d_p is pitch diameter, d_r is minor diameter, d is nominal major diameter and *p* is pitch, respectively.

Alternatively, *As* may be found from **Table 5**, **BS EN ISO 898-1: 2013**

Stress-strain relation

Bolted joint Part 2

Calculating *K***^b**

• If there is an unthreaded portion of cross-sectional area A_d and length I_d (including necked bolts) then use formula for **springs in series** to give:

$$
K_b = \frac{A_d A_S E}{A_d l_t + A_S l_d}
$$

• **How to derive the above formula?** *^A^s*

 $\mathbf{1}$

 \boldsymbol{k}

=

 $\mathbf{1}$

 $+$

 $\mathbf{1}$

+ …

 $\boldsymbol{k_{2}}$

 $\boldsymbol{k_1}$

The derivation of the above equation is based on the concept of **Equivalent Stiffness of springs in series**

> $F = F_1 = F_2$ $\Delta l = \Delta l_1 + \Delta l_2$ which may be derived by using the following relations $F = k \Delta l$ $F_1 =$ A_1E l_1 Δl_1 $F_2 =$ A_2E l_{2} Δl_2

Calculating K_c

- *K***^c is harder**: requires us to consider hollow cone-shaped regions in compression
- It can be shown **(no need to know how to derive)**:

$$
K_c = \frac{0.5774\pi Ed}{2ln\left(5\frac{0.5774l + 0.5d}{0.5774l + 2.5d}\right)}
$$

(detailed derivations are given in Shigley et al., Mechanical Engineering Design, Ch8, TJ230 SHI)

 $P + F_i > 0$

 $P - F_i \leq 0$

Concept of "hard" joint

- A "good" joint would have **stiff components** and **elastic bolts**
- In a well engineered **'hard' joint**, the components are stiff $K_c \gg K_b$:
	- $-$ K_c might be 1.7 GN/m or 2.2 GN/m
	- whereas K_h would be 250 MN/m or 500 MN/m
	- $-$ i.e. **K**_c > 3 K_b
- In **'soft' joint,** the bolt is stiffer than the components which results in: $F_c =$
	- High level of bolt fatigue loads

Recall,

 K_b

 $K_b + K_c$

 K_c

 $K_b + K_c$

 $F_b =$

Bolted joint Part 2

Reducing bolt stiffness: necked bolts

- For a bolt (*E* is dependent on material) we require
	- (1) A **small** cross-sectional **area**
	- (2) A **long length**
- A small cross-sectional area
	- Necked down to root diameter
	- Reduces stiffness without loss of strength

Reducing bolt stiffness: necked bolts

Necked bolts in connecting rod

Reducing bolt stiffness: long bolts or tie rods to make a "hard" joint

Bolted joint Part 2

Joint failure & reserve factor

• In application, normally **multiple (N) bolts** need to be used

$$
\frac{K_c}{K_b + K_c} P_0 - NF_i = 0
$$

$$
P_0 = NF_i \frac{K_b + K_c}{K_c}
$$

 $n_0 =$ P_{0} \overline{P} Therefore, **reserve factor** $n_0 = \frac{10}{R} \ge 1.5 \sim 2$

- *P0* is the **maximum allowable external load** applied to **N** bolts at *Fⁱ* preload,
- P is the actual external load applied to the bolted joint

A general guide for reserve factor

Design of pre-tensioned bolted joints

Bolted joint Part 2

- **1. Consider** to use a non-permanent or permanent joint, **define** external load (*P*) and reserve factor (*no*), decide the number of bolts (*N*) **to ensure no joint separation**
- **2. Estimate** preload (*F est* \mathbf{F}_i) of bolt by assuming a hard joint, e.g. *Kc ≈3Kb, NF* $_i \geq$ K_c K_b+K_c \boldsymbol{P}
- **3. Choose a suitable bolt size, e.g. M4, M6 or M10, … and grade, e.g. 6.8, 8.8** or **10.9** and **determine** the preload (*Fi*) by calculating or using **Table 5** of **BS EN ISO 898-1: 2009** $\bm{F}_{\bm{i}} = \bm{0}$. $\bm{75}A_{\bm{s}}\bm{\sigma_{p}}$ (non-permanent) or $\bm{F}_{\bm{i}} = \bm{0}$. $\bm{9}A_{\bm{s}}\bm{\sigma_{p}}$ (permanent joint) \geq $\bm{F}^{\bm{est}}$ *i*
- **4. Calculate** the **stiffness** of the **bolts & components** (*Kb* & *Kc*):

$$
K_b = \frac{A_d A_S E}{A_d l_t + A_S l_d}
$$
 or
$$
K_b = \frac{A_S E}{l_t}
$$
 and
$$
K_c = \frac{0.5774 \pi E d}{2 ln \left(5 \frac{0.5774 l + 0.5 d}{0.5774 l + 2.5 d}\right)}
$$

6. Calculate the maximum allowable external load (*P*₀):

$$
P_0 = N F_i \frac{K_b + K_c}{K_c}
$$

7. Calculate the **reserve factor**, $\boldsymbol{no} = \frac{\boldsymbol{Po}}{\boldsymbol{p}}$ \boldsymbol{P} $\geq 1.5 - 2$, if NOT, go back to Step 3 & iterate

Bolted joint under cyclic loading

Bolted joint Part 2

• Advantages of joints under cyclic loading, e.g. the bolted joint of the cylinder head & crank case of a **2-stroke engine**:

Bolted joint under cyclic loading

Bolted joint Part 2

Summary

- Be familiar with various joining techniques and different types of joints;
- Be able to calculate pre-load for **non-permanent** and **permanent bolted joints** based on **BS/ISO bolt strength grading**, e.g. M10 8.8;
- Be able to determine the **stiffness** of the bolt & clamped members, **resultant loads**;
- Understand the behaviour of pre-tensioned joint under **cyclic loading**;
- Be able to use **reserve factor formula** and the **suggested steps** to design a pre-tensioned bolt joint.

Revision questions

- How to determine the recommended pre-tension load (*Fi*)?
- How much tightening torque (*T*) is needed to achieve the recommended pretension load (*Fi*)?
- By picking up any metric bolts/screws to BS 3692 or BS/EN/ISO 898, how do we know their **mechanical properties**, e.g. σ_{UTS} or σ_n ?
- How much external load (*P*) will be taken by the bolt (*Pb*) and the components (*Pc*)?
- In designing a bolted joint, why is a **"hard"** joint a preferred option?
- Why is a pre-tensioned bolted joint is beneficial for **cyclic loading**?
- What is the **threshold or critical requirement** used in the design of a bolted joint?

Bolted joint resources

- http://www.tribology-abc.com
	- Great calculators and other general information on threads (+ bearings)
- Childs, R.N., 2004. Mechanical Design, Elsevier
	- Chapter 12 discusses screw threads
- Shigley, J.E., Mischke, C.R., Budynas, R.G., 2003. Mechanical Engineering Design, 7th edition, McGraw-Hill, (TJ230 SHI)
	- Chapter 8 covers threads & joints

Design and analysis of bolted joints

End of Part 2

Design and analysis of bolted joints

Part 3 Worked examples

Worked example 1: Joint design of a 2-stroke engine

- **Design bolted joint of a 2.4 kW** 2-stroke engine.
	- o Peak force is *P* **= 6.5 kN**
	- o A **permanent joint** with a threaded grip length *lt* **= 25 mm**
	- o Cylinder and crankcase are made of cast Al (**E=70 GPa**)
	- o **4 x bolts (5.6 or similar,** carbon steel, **E=200 GPa)**
	- o **Reserve factor** should be in the range of **1.5~2.0**.
- **Determine**
	- **a) Suitable size of socket cap screw**
	- **b) Right amount of tightening torque**

Otto cycle of two-stroke engine [https://en.wikipedia.org/wiki/Two](https://en.wikipedia.org/wiki/Two-stroke_engine)stroke engine

Bolted joint Part 3

Worked example 1: Joint selection of a 2-stroke engine

a) Selection of a suitable socket cap screw

Bolted joint Part 3

- **1. Joint design** specifies external load (*P=6.5 kN*) and reserve factor (*no=1.5~2*), a **permanent joint** of **4 x** socket cap screw (*N=4*).
- **2. Estimate** pre-load (*Fi*) of bolt by assuming a hard joint, $Kc \approx 3Kb$, $NF_i \ge$ $\bm{K_c}$ K_b+K_c \boldsymbol{P}

$$
F_i^{est} \ge \frac{1}{N} \frac{K_c}{K_b + K_c} P = \frac{1}{4} \times \frac{1}{1.3} \times 6,500 = 1,250(N)
$$

3. Choose a suitable bolt size from **BS ISO 898-1: 2009 (Table 5)**

M4 seems to be the right size

 $\bm{F}_{\bm{i}} = \bm{2}$, $\bm{214} > \bm{F}_{\bm{i}}^{est} = \bm{1}$, $\bm{250}$ (N

Ok for detailed evaluation

Table 5 - Proof loads - ISO metric coarse pitch thread

Worked example 1: Joint selection of a 2-stroke engine

Bolted joint Part 3

4. Calculate stiffness of the **bolts & components** (*Kb* & *Kc*):

$$
K_b = \frac{A_S E}{l_t} = \frac{8.78 \times 200 \times 10^3}{25} = 70.2 \times 10^3 (N/_{mm})
$$

$$
K_c = \frac{0.5774 \pi Ed}{2ln\left(5 \frac{0.5774l + 0.5d}{0.5774l + 2.5d}\right)} = \frac{0.5774 \times 3.1416 \times 70 \times 10^3 \times 4}{2 \times ln\left(5 \times \frac{0.5774 \times 25 + 0.5 \times 4}{0.5774 \times 25 + 2.5 \times 4}\right)}
$$

= 211.3× 10³(*N*/*mm*)

5. Calculate the maximum allowable external load (*Po*):

$$
P_0 = NF_i \frac{K_b + K_c}{K_c} = 4 \times 2,214 \times \frac{(70.2 + 211.3) \times 10^3}{211.3 \times 10^3} = 11,790(N)
$$

6. Calculate the reserve factor (*no*):

$$
n_0 = \frac{P_0}{P} = \frac{11,790}{6,500} = 1.8
$$

which is in the range of 1.5~2.0. Therefore, 5.6 M4 socket cap screw is a suitable choice.

Worked example 1: Joint selection of a 2-stroke engine

b) Calculation of the required torque for tightening

Use simplified torque tightening equation

 $T=KF_id$

where **K** is torque coefficient, $K \approx 0.2$ for most cases; *d* is nominal diameter and *Fi* is pre-tension

$$
T = K F_i d = 0.2 \times 2.214 \times 4 \times 10^{-3} = 1.8 \ (Nm)
$$

Therefore, application of *T=1.8 Nm* **tightening torque** to each **M4** socket cap screw would generate the required *Fi=2,214 N* pre-tension load.

Bolted joint Part 3

Worked example 2: Evaluation of a bolted joint

Evaluation of a designed bolt joint

- **Eight non-permanent steel M16, 8.8** bolts (E = 200 GPa) are used to secure 40 mm of nongasketed cast iron flanged coupling (E = 96 GPa) on which is imposed a separating force of **P=500 kN.**
- **Determine:**
	- a) bolt stiffness K_h
	- b) components stiffness *K^c*
	- c) Reserve factor $n₀$

Bolted joint Part 3

Bolt stiffness

- **Bolt stiffness**: $K_b =$ $A_d A_S E$ $A_d l_t + A_S l_d$
- Area of unthreaded section $A_d =$ π 4 $d^2 =$ $\pi \times (16 \times 10^{-3})^2$ 4 $= 201.1 \times 10^{-6} m^2$
- Area of threaded $A_S =$ section π $\frac{1}{16} \left(d_p + d_r \right)$ 2 = π $\frac{\pi}{16}$ (14.7 + 13.55)² × 10⁻⁶ $=156.7 \times 10^{-6} m^2$

$$
K_b = \frac{201.1 \times 156.7 \times 10^{-12} \times 200 \times 10^9}{(201.1 \times 20 + 156.7 \times 20) \times 10^{-9}} = 881.6 \times 10^6 \, N/m
$$

• **Component stiffness:**

$$
K_c = \frac{0.5774 \pi Ed}{2ln\left(5\frac{0.5774l + 0.5d}{0.5774l + 2.5d}\right)} = 1.513.4 \times 10^6 \, N/m
$$

Initial clamping force

• The recommended initial clamping force for **M16 8.8 non-permanent joints** is:

$$
F_i = 0.75 A_S \sigma_p
$$

⁼ 0.85 ⁼ 0.85 [×] ⁶⁴⁰ ⁼ ⁵⁴⁴ *^Fⁱ*

$$
A_S = \frac{\pi}{16} \left(d_p + d_r \right)^2 = 156.7 \times 10^{-6} m^2
$$

Therefore,

$$
F_i = 0.75 \times 544 \times 156.7 = 63.9 \times 10^3 N
$$

Reserve factor

• Maximum external load to separation for **8 x M16 bolts**:

$$
P_0 = NF_i \frac{K_b + K_c}{K_c}
$$

= 8 × 63.9 × 10³ $\frac{(881.6 + 1,513.4) × 10^6}{1,513.4 × 10^6}$
= 809.2 × 10³ N

• Therefore, the **reserve factor** of this bolted joint is:

$$
n_0 = \frac{P_0}{P} = \frac{809.2 \times 10^3}{500 \times 10^3} = 1.62
$$

This is acceptable.

Recall,
\n
$$
\frac{K_c}{K_b + K_c} P_0 - NF_i = 0
$$

Answers to revision questions

• The recommended **pre-tension load** (*Fi*): *(slide 24)*

 $F_i = 0.75 A_s \sigma_p$ (non-permanent) or $F_i = 0.9 A_s \sigma_p$ (permanent joint)

- **Tightening torque** (*T*): *(slide 27)* $T = K F_i d$
- **Mechanical properties** of metric bolts are defined by **mark**s, e.g. **10.9** *(slide 24)*
- External load (*P*) will be shared by the bolt (*Pb*) and components (*Pc*) *(slides 29-32)*

$$
F_b = \frac{K_b}{K_b + K_c} P + F_i > 0 \qquad F_c = \frac{K_c}{K_b + K_c} P - F_i \le 0
$$

- A **"hard"** joint is preferred because components take a **larger load** *(slides 36-38)*
	- Pre-tensioned bolted joint reduces **cyclic loading in bolts** *(slides 42-43)*
	- **The requirement** is to ensure **no joint separation** *(slide 40)* $n_0 =$ P_{0} \boldsymbol{P} $\geq 1.5 - 2$ $P_0 = N F_i$ K_b+K_c \overline{K}_c

Design and analysis of bolted joints

End of Session